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Abstract: Addressing the indeterminacy of spatial information from multiple sources is a major challenge in any decision-making process. 

This applies in particular to the assessment of the risks caused by natural events when decision-making models are based on a range of 

natural, economic and social indicators. In this context, many of these indicators are semantically vague, others are spatially or temporally 

uncertain. Most indicators can be assessed at different scales according to the needs of different organizations. Current decision support 

systems generally do not consider the inaccuracy of information, but assume that indicators have well-defined and accurate semantics, 

geometry, and temporality. 
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Introduction 

     The blurring of information is an essential feature of the data that must be considered in every decision-making process (Kentel and Aral 

2007, Bejaoui 2009). Information inequalities can be propagated during the integration and aggregation processes and thus also in the decision-

making process. Ignoring inaccurate information can lead to unrealistic or misleading conclusions and decisions that have unintended or even 

catastrophic consequences. For example, decisions based on unclear environmental, economic and social indicators can lead to incomplete 

territorial coverage of flood insurance, poorly positioned erosion protection infrastructure and changes to contingency plans, more victims, 

etc.The information vagueness in assessing the risks caused by natural phenomena can be characterized as semantic, spatial, and temporal. Most 

of these phenomena have also multi-scale characteristics (Cheng et al. 2009). Several works have already been initiated to deal with information 

vagueness (Pauly& Schneider 2010; Bejaoui 2009; Edoh-alove et al. 2013; Schneider et al. 2011; Schneider 2010; Schneider 2003a; Fisher 

2008). From the technological point of view, existing tools do not provide built-in capabilities to deal with information vagueness either. For 

instance, in the case of risk assessment, multiple decision indicators are required to define and then translate into datacube dimensions to 

calculate potential risk. 

 

Fuzzy Spatial Datacube 

     Spatial datacubes are designed to deal with the cross-tab of hierarchical semantic systems (Bédard et al.2009). The main elements of a spatial 

datacube (i.e. level’s attributes, spatial levels, spatial members, spatial dimension, spatial hierarchy, spatial measures, and spatial facts) are 

formally defined in Salehi (2009). Data in a spatial datacube can also be uncertain or vague. Moreover, the information vagueness may also arise 

in the definition of dimensions, hierarchies, aggregation relationships, aggregation functions and spatial measures (Sboui 2010). Thus, 

information vagueness should appropriately be handled in a spatial datacube. Embedding information vagueness in the multidimensional model 

requires redefining the principal elements of the spatial datacube which is explained hereafter. In this regard, a fuzzy approach based on Fuzzy 

Set Theory is proposed and is applied to a spatial multidimensional model proposed for CERA in Jadidiet al. (2013).Characterization (i.e., 

generalization) can be used to generalize task relevant data into generalized data cube. Characteristic rules, which are extracted from a 

generalized data cube, summarize general characteristic of user-specified data. Similarly, characteristic rules, which are extracted from a fuzzy 

spatial data cube, can summarize the climate data for a region with the extension that they can also present the general characteristics of the 

region’s climate with some precision. The raw data for one region can be generalized into concepts like cold (0.9), mild (0.7) and hot (0.5) for 

temperature, and dry (0.28), wet (0.72) for precipitation with the precision values that indicates the degree of reliability of the generalization. 

 

Fuzzy aggregation in spatial Datacube 

     Aggregation in Geospatial Business Intelligence (GeoBI) community is the grouping of data geometrically, thematically, or semantically to a 

coarser level of detail (Pedersen et al. 2001; Gomez et al. 2009). This concept of aggregation is very different from the map generalization 

process (Bédard et al. 2007) and is not the same as in object-oriented modeling (Laurent 2010). In fact, aggregation in GeoBI is a summarization 

process of values or geometries in a datacube that directly depends on the data model used (Péres et al. 2007; Laurent 2010; Gomez et al. 2009; 

Pedersen et al. 2001). It typically uses SUM, AVG, MIN, MAX, COUNT and similar operators, but also more complex ones such as spatial 

operators (e.g. overlay, intersect, include, and fusion), and advanced statistical formula or simulation algorithms. In addition, the geometry used 

at the different levels of abstraction often comes from different datasets.Using fuzzy concepts to define appropriate operators for data 

aggregation in a datacube has been initiated by Laurent 2010 and Molina et al. (2006). A series of operators such as roll-up, drill-down, slice, 

dice, and pivot have been defined for fuzzy datacubes in Molina et al. 2006 and Martin-bautista et al. (2013) using both quantitative and 

qualitative data. This permits a qualitative representation of results on charts and tables. The thematic aggregation can principally be performed 

based on Laurent 2010 and Molina et al. (2006). However, the geometric aggregation involving spatially fuzzy or crisp members requires 

redefining fuzzy operators such as overlay and fusion for fuzzy spatial objects. Spatial relations in fuzzy aggregation follows the ISO standard 

model (Dilo 2006) and the true/false values of the ISO relations have been extended to a fuzzy degree between 0 and 1 that represents its 
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truthiness. The fuzzy operators are equivalent to their crisp counterparts when applied to crisp objects, since crisp objects have maximum degree 

of membership of 1.Instead of generalizing spatial data to temperature regions”, “[2-3] temperature regions”  and then aggregating them to “hot 

regions”; generalizing each spatial datum to “hot region” with the precision value for the reliability to that generalization μhotand then 

aggregating them to “hot regions” with a μhot for the aggregated regions is more meaningful and natural. Different temperature values will cause 

to generalizations with different precision values. Introducing fuzzy logic to spatial generalizations helps to have more smooth generalizations. 

 

Fuzzy Union 

     Fuzzy union operator results a new fuzzy object from combining multiple fuzzy objects, fuzzy partitions in this paper, with the membership 

values of whom with higher membership degree (Dilo et al. 2007; Schneider2003a). 

 
The formal definitions of fuzzy union, example of numerical  values and their geometrical representations 

 

Fuzzy Intersection 

     Fuzzy intersection operator results a new fuzzy object from combining multiple fuzzy objects, here fuzzy partitions, with the membership 

values of whom with lower membership degree (Dilo et al. 2007; Schneider 2003a). That means fuzzy intersection produces a new fuzzy region 

by taking the cells with lower membership value inside any overlapping area. 

     Association discovers a set of association rules in the form of X1 ^ … ^ Xn -> Y1 ^…Ym, at multiple levels of abstraction from the relevant 

set(s) of data in a database. Association rule discovery necessitates the computation of support to find the frequent item sets and the computation 

of confidence to find the interesting rule. Computation of these factors requires the count of occurrences of the corresponding item set and the 

count of all item sets. The data cubes facilitate efficient mining ofassociation rules since a count cell stores the number of occurrences of the 

corresponding multi-dimensional data values and a dimension count cell stores thesum of counts of the whole dimension. These count cells 

simplifies the calculation of support and confidence measures of the association rules. But, in fuzzy data cubes,the interesting association rules 

can be determined according to their significance andcertainty factors, these reflects the reliability to generalization, instead of support 

andconfidence factors which reflect the frequency of the data. 
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Spatial Generalization 

 
 

Fuzzy Spatial Generalization 

 
 

In Laurent’s study [10] for fuzzy cubes, each slice corresponds to the cube with a membership value, i.e., a value of one dimension has the same 

membership value for all the cells in the slice. But in our fuzzy spatial data cube each cell has its individual membership value for the 

corresponding dimension value since spatial objects might have common properties but eachspatial object might have that property with a 

different degree than other spatial objects as displayed in Figure 2. 

 

 
 

 
Figure 2. Dimensions and Their Memberships 

 

Conclusion 

     Fuzzy spatial datacubes are essential to perform more comprehensible knowledge discovery for effective decision-making. An example in this 

regard is assessing the risks caused by natural phenomena like erosion in coastal regions. A fuzzy-logic-based approach was proposed in this 

paper to deal with information vagueness originated from the uncertainty of an object and its geometry definition. This concept was then 

embedded into a spatial datacube through redefining the spatial datacube elements (dimensions, members, hierarchies,measure and facts) as 

fuzzy dimensions, fuzzy members, fuzzy hierarchies, fuzzy measures, fuzzy facts and required fuzzy aggregation operators (union, intersection, 

difference, overlay, and fusion). One of the main advantages of using a fuzzy spatial datacube is the capability to present and report the results to 
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end-users using linguistic expressions. Another advantage is representing separately the level of uncertainty and vagueness of the calculated 

measures for a more realistic decision-making. 
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